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Assuming that the mechanism proposed by Gell-Mann and Hartle works as a
mechanism for decoherence and classicalization of the metric field, we formally
derive the form of an effective theory for the gravitational field in a semiclassical
regime. This effective theory takes the form of the usual semiclassical theory of
gravity, based on the semiclassical Einstein equation, plus a stochastic correction
which accounts for the backreaction of the lowest order matter stress-energy
fluctuations.

1. INTRODUCTION

In the semiclassical theory of gravity, the gravitational field is treated

classically, but the matter fields are quantum. The key equation of the theory
is the semiclassical Einstein equation, a generalization of the Einstein equation

where the expectation value of the stress-energy tensor of quantum matter

fields is the source of curvature.

One expects that semiclassical gravity could be derived from a funda-

mental quantum theory of gravity as a certain approximation, but in the

absence of such a fundamental theory, the scope and limits of the semiclassical
theory are not very well understood. It seems clear, nevertheless, that it

should not be valid unless gravitational fluctuations are negligibly small.

This condition may break down when the matter stress-energy has appreciable

quantum fluctuations, since one would expect that fluctuations in the stress-

energy of matter would induce gravitational fluctuations [1 ]. A number of

examples have been recently studied, both in cosmological and flat space-
times, where, for some states of the matter fields, the stress-energy tensor
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has significant fluctuations [2]. To account for such fluctuations, it is necessary

to extend the semiclassical theory of gravity.

To address this problem or analogous problems in quantum mechanics
or quantum field theory, different approaches have been adopted in the litera-

ture. The present paper attempts to unify, at least conceptually, two of these

approaches in a formal derivation of an effective theory for the gravitational

field in the semiclassical regime. The common feature of these two approaches

is the idea of viewing the metric field as the system of interest and the matter

fields as being part of its environment . This idea was first proposed by Hu
[3 ] in the context of semiclassical cosmology. Both approaches make use of

the influence functional formalism introduced by Feynman and Vernon [4 ]

to deal with a system±environment interaction in a full quantum theory. In

this formalism, the integration of the environmental variables in a path integral

yields the influence functional, from which one can define an effective action

for the dynamics of the system [5±12 ].
The first of these two approaches has been extensively used in the litera-

ture, not only in the framework of semiclassical cosmology [6±8, 13±16 ], but

also in the context of analogous semiclassical regimes for systems of quantum

mechanics [9, 11, 17] and of quantum field theory [12, 18±21]. It makes use

of the closed time path (CTP) functional technique due to Schwinger and
Keldysh [22]. This is a path-integral technique designed to obtain expectation

values of field operators in a direct way [23]. In the semiclassical regime, a

tree-level approximation is performed in the path integrals involving the system

variables. In this approximation, the equation of motion for the expectation

value of the system field operator is the semiclassical equation, which can be

directly derived from the effective action of Feynman and Vernon [6, 12, 13,
15, 16, 20]. When computing this effective action perturbatively up to quadratic

order in its variables, one usually finds some imaginary terms which do not

contribute to the semiclassical equation. The key point of this approach is the

formal identification of the contribution of such terms to the influence functional

with the characteristic functional of a Gaussian stochastic source. Assuming

that in the semiclassical regime this stochastic source interacts with the system
variables, and thus these become stochastic variables, equations of the Langevin

type are derived for these variables. However, since this approach relies on a

purely formal identification, doubts can be raised on the physical meaning of

the derived equations.

The second approach is based on the description of the transition from

quantum to classical behavior in the framework of the consistent histories
formulation of a quantum theory. The consistent histories formulation, pro-

posed by Griffiths [24 ] and developed by OmneÁ s [25 ] and Gell-Mann and

Hartle [26, 27 ], was designed to deal with quantum closed (i.e., isolated)

systems. It is thus believed to be an appropriate approach to quantum cosmol-
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ogy, where the quantum system is the whole universe. The main goal of this

formulation is the study of the conditions under which a set of quantum

mechanical variables become decoherent, which means that these variables
can be described in a probabilistic way [26±30]. When the closed system

consists of a distinguished subsystem (the ª system,º which is also often

called an ª open systemº ) interacting with its environment, Gell-Mann and

Hartle proposed a mechanism for decoherence and classicalization of suitably

coarse-grained system variables [26, 27 ]. This approach allows one to evaluate

the probability distribution functional associated with such decoherent vari-
ables and, under some approximations, to derive effective quasiclassical

equations of motion of the Langevin type for such variables [26±28, 31, 32 ].

In Section 2, we show that that these two approaches can in fact be

related. In this way, we see that, on the one hand, the second approach sheds

light on the physical meaning of the first one. On the other hand, the first

approach provides a tool for computing effective Langevin-type equations
to the second one. A large portion of this section consists in reformulating

the mechanism for decoherence and classicalization of Gell-Mann and Hartle

in the language of the CTP functional formalism.

In Section 3, we use the results of this analysis to formally derive

effective equations of motion for the gravitational field in a semiclassical
regime. This derivation relies heavily on the results of the previous section.

We find that, in the semiclassical regime, gravity might be described by a

background metric, solution of the semiclassical Einstein equation, plus some

stochastic metric perturbations. The equation for these perturbations, the

semiclassical Einstein±Langevin equation, is seen to incorporate the effect

of the lowest order matter stress-energy fluctuations on the gravitational field.
In this paper we use the ( 1 1 1 ) sign conventions and the abstract

index notation of ref. 33, and we work in units in which c 5 " 5 1.

2. EFFECTIVE EQUATIONS OF MOTION FROM
ENVIRONMENT-INDUCED CLASSICALIZATION

2.1. The CTP Functional Formalism for a System ± Environment
Interaction

We start this section by sketching the CTP functional formalism [22]

applied to a system±environment interaction and its relation with the influence

functional formalism of Feynman and Vernon [4 ]. For more detailed reviews
of the CTP functional formalism, see refs. 23 and 16, and for the influence

functional formalism of Feynman and Vernon, see refs. 5±12. For simplicity,

we shall work in this section with a model of quantum mechanics, but all the

formalism can also be formally applied to field theory. It is instructive to
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maintain in this section the explicit dependence on " . Let us consider a model

of quantum mechanics which describes the interaction of two subsystems: one,

called the ª system,º with coordinates q, and the other, called the ª environment,º
with coordinates Q.3 We write the action for this model as S [q, Q ] 5 Ss [q ] 1
Sse [q, Q ].4 Let qÃ(t) and QÃ(t) be the Heisenberg-picture coordinate operators,

which are assumed to be self-adjoint, i.e., qÃ² 5 qÃand QÃ² 5 QÃ, and let qÃS and

QÃS be the corresponding SchroÈ dinger-picture operators. Suppose that we are

only interested in describing the physical properties of system observables from

some initial time ti until some final time tf . ti. Working in the SchroÈ dinger
picture, the state of the full system (i.e., system plus environment) at the initial

time t 5 ti will be described by a density operator r ÃS(ti). Let { ) q, Q & S} be the

basis of eigenstates of the operators qÃS and QÃS. The matrix elements of the

initial density operator in this basis will be written as r (q, Q; q8, Q8; ti) [
S^ q,Q ) r ÃS(ti) ) q8,Q8 & S. For simplicity, we shall assume that the initial density

operator can be factorized as r ÃS(ti) 5 r ÃS
s (ti) ^ r ÃS

e(ti) in such a way that its matrix
elements in coordinate representation can be written as r (q, Q; q8, Q8; ti) 5
r s(q, q8; ti) r e(Q, Q8; ti). However, the formalism can be generalized to the most

general case of a nonfactorizable initial density operator [36, 37, 26]. We are

interested in computing expectation values of operators related to the system

variables only, for times t between ti and tf. The dynamics of the system in this
sense can be completely characterized by the knowledge of the whole family

of Green functions of the system. Working in the Heisenberg picture, these

Green functions can be defined as expectation values of products of qÃ(t) opera-

tors. These Green functions can be derived from a CTP generating functional

in which only the system variables are coupled to external sources j+(t) and

j 2 (t) [6, 12, 13, 16, 19, 20]. This CTP generating functional can be written as
the following path integral5:

3 Even if, in order to simplify the notation, we do not write indices in these coordinates, q and
Q have to be understood as representing an arbitrary number of degrees of freedom (which,
in particular, can be an infinite number of degrees of freedom).

4 We shall assume that the action S [q, Q ] is the one that appears in the path integral formulas
for the model, which, in general, does not need to coincide with the classical action for the
model [34, 35].

5 A way of generalizing the formalism to a nonfactorizable initial density operator consists in
the following refs. 36 and 26. One writes the initial density matrix in coordinate representation
as r (q, Q; q8, Q8; ti) 5 r s(q, q8; ti) r se(q, Q; q8, Q8; ti), where r s is chosen in such a way that
* dq r s (q, q; ti) 5 1. Then, the CTP generating functional can be written as (2.1), with

exp H i

"
Seff [q+, q 2 ] J

[ # $ [Q+ ] $ [Q 2 ] r se(q 1 i, Q 1 i; q 2 i, Q 2 i; ti) d (Q 1 f 2 Q 2 f)

3 exp H i

"
(S [q+, Q+ ] 2 S [q 2 , Q 2 ]) J
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Z [j+, j 2 ] 5 # $ [q+ ] $ [q 2 ] r s(q 1 i, q 2 i; ti) d (q 1 f 2 q 2 f)

3 exp H i

"
(Seff [q+, q 2 ] 1 " # dt j+q+ 2 " # dt j 2 q 2 ) J (2.1)

with

Seff [q+, q 2 ] [ Ss [q+ ] 2 Ss [q 2 ] 1 SIF [q+, q 2 ] (2.2)

where SIF is the influence action of Feynman and Vernon, which is defined

in terms of the influence functional ^IF as

^IF [q+, q 2 ] [ exp H i

"
SIF [q+, q 2 ] J

[ # $ [Q+ ] $ [Q 2 ] r e(Q 1 i, Q 2 i; ti) d (Q 1 f 2 Q 2 f)

3 exp H i

"
(Sse [q+, Q+ ] 2 Sse [q 2 , Q 2 ]) J (2.3)

We shall call Seff [q+, q 2 ] the effective action of Feynman and Vernon. In

these expressions we use the notation q 1 i [ q+(ti), q 1 f [ q+(tf), Q 1 i [ Q+(ti),
Q 1 f [ Q+(tf), and similarly for q 2 and Q 2 . All the integrals in t, including
those that would define the actions Ss [q ] and Sse [q, Q ] in terms of the corres-

ponding Lagrangians, have to be understood as integrals between ti , and tf.
The CTP generating functional has the properties

Z [j, j ] 5 1, Z [j 2 , j+ ] 5 Z*[j+, j 2 ], ) Z [j+, j 2 ]) # 1 (2.4)

From this generating functional, we can derive the following Green function

for the system:

^ TÄ [qÃ(t81) ? ? ? qÃ(t8s) ]T [qÃ(t1) ? ? ? qÃ(tr) ]&

5
d Z [j+, j 2 ]

i d j+(t1) ? ? ? i d j+(tr)( 2 i) d j 2 (t81) ? ? ? ( 2 i) d j 2 (t8s ) Z j 6 5 0

(2.5)

where t1, . . . , tr , t81, . . . , t8s are all between ti and tf , and T and TÄ mean,

respectively, time and anti-time ordering. The expectation value is taken in

the Heisenberg-picture state corresponding to the SchroÈ dinger-picture state
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described by r ÃS(ti) at the initial time t 5 ti. The influence functional (2.3)

can actually be interpreted as a CTP generating functional for quantum

variables Q coupled to classical time-dependent sources q(t) through the
action Sse [q, Q ] [38 ]. Let us consider the quantum theory for the variables

Q in presence of classical sources q(t) corresponding to this action, and

assume that the initial SchroÈ dinger-picture state for the quantum variables Q
is described by the density operator r ÃS

e(ti). For this theory, let 8Ã[q ](t, t8) be

the unitary time-evolution operator, which can be formally written as 8Ã[q ](t,
t8) 5 T exp [2 (i/ " ) * t

t8 dt9HÃS [q ](t9) ], for t . t8, where HÃS [q ](t) is the Hamilto-
nian operator in the SchroÈ dinger picture. This Hamiltonian operator depends

on t as a function of q(t) and its derivative qÇ (t), and this gives a functional

dependence on q in the operator 8Ã. It is easy to see that [26, 27, 7, 11, 12, 36 ]

^IF [q+, q 2 ] 5 Tr[r ÃS
e(ti)8Ã

² [q 2 ](tf , ti)8Ã[q+ ](tf , ti) ]

5 ^ 8Ã² [q 2 ](tf , ti)8Ã[q+ ](tf , ti) & r ÃSe (ti) (2.6)

where we use ^ ? & r ÃSe (ti) to denote an expectation value in the state described

by r ÃS
e(ti). From this expression, it follows that the influence functional satisfies

^IF [q, q ] 5 1, ^IF [q 2 , q+ ] 5 ^*IF [q+, q 2 ], ) ^IF [q+, q 2 ]) # 1 (2.7)

or, equivalently, in terms of the influence action,

SIF [q, q ] 5 0, SIF [q 2 , q+ ] 5 2 S*IF [q+, q 2 ], Im SIF [q+, q 2 ] $ 0

(2.8)

and similar properties follow for Seff [q+, q 2 ]. A decoherence functional for

the system, where the environment variables have been completely integrated

out, can now be introduced as the functional Fourier transform of the CTP

generating functional in the external sources:

Z [j+, j 2 ] [ # $ [q+ ]$ [q 2 ]$ [q+, q 2 ] exp F i # dt ( j+q+ 2 j 2 q 2 ) G (2.9)

that is, from (2.1) we have that

$ [q+, q 2 ] 5 r s(q 1 i, q 2 i ; ti) d (q 1 f 2 q 2 f) exp H i

"
Seff [q+, q 2 ] J (2.1 0)

In the consistent histories approach to quantum mechanics, $ [q+, q 2 ] is
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known as the decoherence functional for fine-grained histories of the system

[26±29, 31, 32].

The environment of a system has to be understood as characterized by
all the quantum degrees of freedom which can affect the dynamics of the

system, but which are ª not accessibleº in the observations of that system.

This environment includes in general an ª externalº environment (variables

representing other particles, or, in the context of field theory, other fields)

and an ª internalº environment (some degrees of freedom which, from the

fundamental quantum theory point of view, would be associated to the same
physical object as the ª systemº variables, but which are not directly probed

in our observations of the system) [39, 25 ]. For instance, a problem which

has been studied using the influence functional method is that of quantum

Brownian motion [4, 5, 9±11, 17, 26±28, 31, 32, 36, 37, 40]. In this problem,

one is interested in the dynamics of a macroscopic particle interacting with

a medium composed of a large number of other particles. In this example,
one considers that the only ª observableº system degree of freedom is the

center-of-mass position of the macroscopic particle, whereas the remaining

microscopic degrees of freedom of the macroscopic particle are considered

as environmental variables. Such ª internalº environment degrees of freedom,

and also those of the particles of the medium (the ª externalº environment),
are usually modeled as an infinite set of harmonic oscillators. In the context

of field theory, one would typically consider as ª inaccessibleº to the observa-

tions the modes of the field of interest with characteristic momenta higher

than some cutoff momentum [41, 12, 18 ]. In the case of the gravitational

field, this has been considered by Whelan [42 ] in a toy model designed to

investigate the decoherence mechanism for gravity.
It is convenient at this stage to distinguish between these two kinds of

environmental variables, so let Q represent the coordinates of the ª externalº

environment (the coordinates of ª other particlesº ) and qU the ª unobservable

systemº coordinates (the coordinates of the ª internalº environment). As

before, q will represent the ª trueº system coordinates. One could now simply

replace Q by (Q, qU) in the previous expressions. However, for convenience,
we shall do the integrations in the environmental variables in two steps. The

action of the full system will be now written as S [q, qU, Q ], and, as before,

we shall assume a totally factorizable initial density operator r ÃS(ti) 5 r ÃS
s (ti)

^ r ÃS
U(ti) ^ r ÃS

e(ti), which leads to an initial density matrix in coordinate

representation of the form r (q, qU, Q; q8, q8U, Q8; ti) 5 r s(q, q8; ti) r U(qU,

q8U; ti) r e(Q, Q8; ti) (notice that we are now using the index e for the ª externalº
environment). Such a factorization is based on the assumption that the interac-

tions among the three subsystems can be neglected for times t # ti. Unfortu-

nately, in most situations, this assumption does not seem to be very physically

reasonable, especially for the ª trueº system±ª internalº environment interac-
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tions. One would need to consider the generalization of the formalism to a

nonfactorizable initial density operator mentioned above and the analysis

would be more complicated. We start by defining

exp H i

"
(Seff

s [q+ ] 2 Seff
s [q 2 ] 1 Seff

se [q+, Q+; q 2 , Q 2 ]) J
[ # $ [qU 1 ]$ [qU 2 ]r U(qU 1 i, qU 2 i; ti) d (qU 1 f 2 qU 2 f)

3 exp H i

"
(S [q+, qU 1 , Q+ ] 2 S [q 2 , qU 2 , Q 2 ]) J (2.11)

where the effective action for the system Seff
s [q ] is chosen to be real and local.

Notice that the effective action Seff
se [q+, Q+; q 2 , Q 2 ] has analogous properties

to those of SIF in (2.8). We introduce now an effective influence functional
and an effective influence action as

^eff
IF [q+, q 2 ] [ exp H i

"
Seff

IF [q+, q 2 ] J
[ # $ [Q+ ]$ [Q 2 ]r e(Q 1 i, Q 2 i; ti) d (Q 1 f 2 Q 2 f)

3 exp H i

"
Seff

se [q+, Q+; q 2 , Q 2 ] J (2.12)

With these definitions, the effective action of Feynman and Vernon,

Seff [q+, q 2 ], which appears in expression (2.1) can be written as

Seff [q+, q 2 ] [ Seff
s [q+ ] 2 Seff

s [q 2 ] 1 Seff
IF [q+, q 2 ] (2.13)

Note that, since Seff [q+, q 2 ] satisfies the same properties as SIF in (2.8), it

follows from the last expression that Seff
IF has also these properties.

2.2. The ª Naiveº Semiclassical Approximation

The usual ª naiveº semiclassical approximation for the system variables

consists in performing a ª tree-levelº approximation in the path integrals

involving the q variables in expression (2.1) [6, 12, 13, 15, 16, 20]. Therefore,

the CTP generating functional is approximated by
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Z [j+, j 2 ] . exp H i

"
(Seff [qÅ ( 0)

1 [j ], q( 0)
2 [j ]] 1 " # dt j+qÅ

( 0)
1 [j ]

2 " # dt j 2 qÅ ( 0)
2 [j ]) J (2.14)

where qÅ ( 0)
6 [j ] [ qÅ ( 0)

6 [j+, j 2 ] are solutions of the classical equations of motion

for the action Seff [q+, q 2 ] 1 " * dt j+q+ 2 " * dt j 2 q 2 , that is,

d Seff [qÅ ( 0)
1 , qÅ ( 0)

2 ]

d q 6 (t)
5 7 " j 6 (t) (2.15)

which satisfy the boundary condition qÅ ( 0)
1 (tf) 5 qÅ ( 0)

2 (tf). Whenever this approxi-

mation is valid, we can see from (2.14), (2.15), and (2.5) that ^ qÃ(t) & . q( 0)(t),
with q( 0) [ qÅ ( 0)

1 [j+ 5 j 2 5 0] 5 qÅ ( 0)
2 [j+ 5 j 2 5 0], that is, q( 0)(t) is a solution

of the two equivalent equations

d Seff [q+, q 2 ]

d q+(t) Z q 1 5 q 2 5 q( 0)
5 0,

(2.16)

d Seff [q+, q 2 ]

d q 2 (t) Z q 1 5 q 2 5 q( 0)
5 0

One can see that these two equations are actually the same equation, and

that this equation is real. This is the semiclassical equation for the system

variables. In a naive way, one would think that, when the above semiclassical

approximation is valid, the system would behave as a classical system
described by the coordinate functions q( 0)(t), i.e., that one could substitute

the description of the system in terms of the operators qÃ(t) by a classical

description in terms of the functions q( 0)(t). However, one can see from (2.14),

(2.15), and (2.5) that, in general,

^ TÄ [qÃ(t81) ? ? ? qÃ(t8s) ]T [qÃ(t1) ? ? ? qÃ(tr) ]&

ñ q( 0)(t1) ? ? ? q( 0)(tr)q
( 0)(t81) ? ? ? q( 0)(t8s) (2.17)

Thus, in general, whenever the above approximations are valid, we can

only interpret the solutions of the semiclassical equation as representing the

expectation value of the operators qÃ(t).

2.3. Further Coarse-Graining and Decoherence

Decoherence takes place in a set of quantum mechanical variables when

the quantum interference effects are (in general, approximately) suppressed
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in the description of the properties of a physical system which are associated

to that variables. When this happens, such decoherent variables can be

described in an effective probabilistic way. In the Heisenberg picture, we
will say that a set of variables decohere when the description in terms of the

operators corresponding to these variables can be replaced by an effective

description in terms of a set of classical random variables, in the sense that

the quantum Green functions for such operators become approximately equal

to the moments of the classical random variables. For the Green functions

(2.5), it is easy to see that this would hold in an exact way if the CTP
generating functional (2.1) depended on the sources j 6 only as a functional

F q [j+ 2 j 2 ] of the difference j+ 2 j 2 , or, equivalently, if the decoherence

functional (2.9) could be written as $ [q+, q 2 ] 5 3q [q+ ] d [q+ 2 q 2 ]. However,

in practice, one finds that this condition is usually too strong to be satisfied,

even in an approximate way [26±29, 31, 32, 42 ]. One needs to introduce

further coarse-graining in the system degrees of freedom in order to achieve
decoherence. Let us then introduce coarse-grained system operators, which

correspond to imprecisely specified values of the system coordinates. In the

Heisenberg picture, such operators can be defined as

qÃc(t) [ o
qÅ

qÅ PÃqÅ (t) (2.18)

where PÃqÅ (t) is a set of projection operators, labeled by some variables qÅ

(these are often discrete variables), of the form

PÃqÅ (t) 5 # dq dqU dQ g (q 2 qÅ ) ) q, qU, Q, t & ^ q, qv, Q, t ) (2.19)

Here { ) q, qU, Q, t & } is the basis of eigenstates of the operators qÃ(t), qÃU(t),
and QÃ(t), and g is a real function. We shall assume coarse grainings of

characteristic sizes s , that is, such that the function g (q 2 qÅ ) vanishes or

has negligible values for q outside a cell IqÅ of sizes s centered around qÅ .
This means that

# dq g (q 2 qÅ ) f (q) . # IqÅ

dq g (q 2 qÅ ) f (q) (2.2 0)

for any function f (q). In addition, the function g must be chosen in such a

way that the set of projection operators is (at least, approximately) exhaustive
and mutually exclusive, which means that

o
qÅ

PÃqÅ (t) 5 IÃ, PÃqÅ (t)PÃqÅ 8(t) 5 d qÅ qÅ 8PÃqÅ (t) (2.21)

where IÃis the identity operator. For specific examples of operators satisfying

the above properties in an exact or in an approximate way, see refs. 31 and 32.
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Next, we can introduce a family of decoherence functions for coarse-

grained histories of the system [26±32 ]. In order to do so, let us consider a

set {t1, . . . , tN} of N instants of time, such that tk , tk 1 1, k 5 0, . . . , N,
with t0 [ ti and tN 1 1 [ tf. Introducing two sets of values of qÅ associated to

such set of instants, {qÅ +} [ { qÅ 1 1, . . . , qÅ 1 N} and {qÅ 2 } [ {qÅ 2 1, . . . , qÅ 2 N},

the decoherence function for this pair of ª coarse-grained historiesº of the

system is defined as

$c({qÅ +}, {qÅ 2 })(t1 ,..., tN)

[ Tr[PÃqÅ 1 N
(tN) ? ? ? PÃqÅ 1 1

(t1) r ÃPÃqÅ 2 1
(t1) ? ? ? PÃqÅ 2 N

(tN) ] (2.22)

where r Ãis the density operator describing the state of the entire system

(system plus environment) in the Heisenberg picture ($c is often called

decoherence ª functionalº in the literature, but for each set {t1, . . . , tN}, this
is actually a function of 2N variables). These decoherence functions can be

written in a path integral form as

$c({qÅ +}, {qÅ 2 })(t1,...,tN)

5 # $ [q+ ]$ [q 2 ] p
N

k 5 1

g (q+(tk) 2 qÅ 1 k) g (q 2 (tk) 2 qÅ 2 k)$ [q+, q 2 ] (2.23)

where $ [q+, q 2 ] is the decoherence functional for fine-grained histories of

the system (2.9).

From the definition (2.22) and the properties (2.21), one can show that

these decoherence functions have the properties

o
{qÅ 1 }

o
{qÅ 2 }

$c({qÅ +}, {qÅ 2 }) 5 1, $c({qÅ 2 }, {qÅ +}) 5 $*c ({qÅ +}, {qÅ 2 })

(2.24)

and that the diagonal elements of the decoherence functions (the values of

those functions in the limit qÅ 2 k
® qÅ 1 k) are positive. For N . 1, we can also

see that, if we divide the set {t1, . . . , tN} into a subset of M , N instants,

{t81, . . . , t8M} , {t1, . . . , tN}, with t81 , ? ? ? , t8M, and the subset of the
remaining L [ M 2 N instants, denoted as {t91, . . . , t9L} [i.e., {t1, . . . , tN}

5 {t81, . . . , t8M} ø {t91, . . . , t9L} ], then

$c({qÅ +}M , {qÅ 2 }M)(t81,...,t8M)

5 o
{qÅ 1 }L

o
{qÅ 2 }L

$c({qÅ +}N , {qÅ 2 }N)(t1,...,tN) (2.25)

with {qÅ 6 }M [ {qÅ 6 (t81), . . . , qÅ 6 (t8M)}, {qÅ 6 }L [ {qÅ 6 (t 91), . . . , qÅ 6 (t 9L)}, where
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we use the notation qÅ 6 (tk) [ qÅ 6 k, for k 5 1, . . . , N, and {qÅ 6 }N [ {qÅ 6 1, . . . ,

qÅ 6 N}.

To make contact with the CTP formalism, let us introduce now, in
analogy with (2.9), a family of generating functions for the coarse-grained

system degrees of freedom as the following Fourier series:

Zc({ j+}, { j 2 })(t1,...,tN) [ o
{qÅ 1 }

o
{qÅ 2 }

$c({qÅ +}, {qÅ 2 })(t1,..., tN)

3 exp H i o
N

k 5 1

( j 1 kqÅ 1 k 2 j 2 kqÅ 2 k) J (2.26)

where{ j 6 } [ { j 6 1, . . . , j 6 N}. Note that the properties (2.24) for the

decoherence functions are equivalent to

Zc({ 0}, { 0}) 5 1, Zc({ j 2 }, { j+}) 5 Z*c ({ j+}, { j 2 }) (2.27)

From the generating function (2.26), we can compute the Green functions

Gn1 ? ? ? nr
c m1 ? ? ? ms(t81, . . . , t8r ; t91, . . . , t9s) [ ^ TÄ [qÃm1

c (t91) ? ? ? qÃms
c (t9s) ]T [qÃn1

c (t81)

? ? ? qÃnr
c (t8r) ]&

with n1, . . . , nr , m1, . . . , ms P N , {t81, . . . , t8r} # {t1, . . . , tN}, and

{t91, . . . , t9s} # {t1, . . . , tN} (thus, r, s # N ):

Gn1 ? ? ? nr
c m1 ? ? ? ms(t81, . . . , t8r ; t91, . . . , t9s)

5
( 2 i - )n1 1 ? ? ? 1 nr 1 m1 1 ? ? ? 1 msZc({ j+}, { j 2 })(t1, . . . , t N)

[- j+(t81) ]n1 ? ? ? [- j+(t8r) ]nr [2 - j 2 (t91) ]m1 ? ? ? [ 2 - j 2 (t9s) ]ms Z {j 6 } 5 { 0}

(2.28)

where j 6 (tk) [ j 6 k, for k 5 1, . . . , N. The property (2.25) can also be written
in terms of the corresponding generating functions as

Zc({ j+}M , { j 2 }M)(t81,..., t8M )

5 Zc({ j+}N , { j 2 }N)(t1,...,tN) ) { j 6 }L 5 { 0} (2.29)

with the notation { j 6 }M [ { j 6 (t81), . . . , j 6 (t8M)}, and similarly for { j 6 }L and

{ j 6 }N. Notice that this last property is consistent with (2.28), in the sense

that, for instance, Gn1n2
c (t81, t82) can be equally computed either from

Zc({ j+}2, { j 2 }2)(t81, t82) or from Zc({ j+}N , { j 2 }N)(t1,..., tN), with N . 2.

Having introduced the coarse-grained description of the system in terms

of the operators qÃc(t), we can now sketch the decoherence mechanism for

them. For the Green functions (2.28), one can show that the decoherence

condition described above holds in an exact way if the generating function
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(2.26) depends on the sources j 6 k only as a function of the differences j 1 k

2 j 2 k, i.e., as F qÅ ({ j+ 2 j 2 })(t1,..., tN). Then, introducing the Fourier series corres-

ponding to F qÅ , we can write

Zc({ j+}, { j 2 })(t1,..., tN)

5 F qÅ ({ j+ 2 j 2 })(t1,..., tN)

[ o
{qÅ }

3qÅ ({qÅ })(t1,..., tN) exp H i o
N

k 5 1
qÅ k( j 1 k 2 j 2 k)) J (2.3 0)

Note from the last expression that, if we interpret the function 3qÅ as the
probability distribution for a set of random variables qÅ k , k 5 1, . . . , N,

associated to the instants tk , then F qÅ is the corresponding characteristic

function. Therefore, from (2.28), we get

Gn1 ? ? ? nr
c m1 ? ? ? ms(t81, . . . , t8r ; t 91, . . . , t 9s)

5
( 2 i - )n1 1 ? ? ? 1 nr 1 m1 1 ? ? ? 1 ms F qÅ ({ j})(t1,..., tN)

[- j(t81) ]n1 ? ? ? [- j(t8r ) ]nr [- j(t 91) ]m1 ? ? ? [- j(t 9s ) ]ms Z { j} 5 { 0}

5 o
{qÅ }

3qÅ ({qÅ })(t1,..., tN)qÅ
n1(t81) ? ? ? qÅ nr(t8r)qÅ

m1(t 91) ? ? ? qÅ ms(t 9s)

[ ^ qÅ n1(t81) ? ? ? qÅ nr(t8r)qÅ
m1(t 91) ? ? ? qÅ ms(t 9s) & c (2.31)

where ^ ? & c means statistical average of the random variables, and we use the

notation qÅ (tk) [ qÅ k , j(tk) [ jk , for k 5 1, . . . , N. Note that if (2.3 0) is
satisfied, then the property (2.29) reduces to

F qÅ ({ j}M)(t81,..., t8M) 5 F qÅ ({ j}N)(t1,..., tN) ) { j}L 5 { 0} (2.32)

or, equivalently,

3qÅ ({qÅ }M)(t81,...,t8M) 5 o
{qÅ }L

3qÅ ({qÅ }N)(t1,..., tN) (2.33)

This last property is a necessary condition for the probabilistic interpretation
(2.31) to be consistent.

The conditions for decoherence (2.30) can be written in terms of the

corresponding decoherence functions as

$c({qÅ +}, {qÅ 2 })(t1,..., tN) 5 3qÅ ({qÅ +})(t1,...,tN) p
N

k 5 1

d qÅ 1 kq
Å 2 k

(2.34)

These are actually the conditions for decoherence of coarse-grained system

variables as stated in the consistent histories formulation of quantum mechan-
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ics [26±32 ]. Notice, from (2.21), that (2.34) is always satisfied for a single

instant of time (i.e., when N 5 1) [31 ].

We can now check that the interpretation of 3qÅ as a probability function
is actually correct. From the second of the properties (2.24), we have that

3*qÅ ({qÅ }) 5 3qÅ ({qÅ }), i.e., 3qÅ is real. Since the diagonal elements of the

decoherence functions are positive, 3qÅ ({qÅ }) is also positive. These two proper-

ties of 3qÅ ({qÅ })(t1,...,tN), together with (2.33), are enough to guarantee that it

can be properly interpreted as the probability distribution for a set of random

variables associated to the instants t1, . . . , tN. From the first of the relations
(2.24), which yields ( {qÅ } 3qÅ ({qÅ }) 5 1, it follows that this probability distribu-

tion is normalized.

In practice, the conditions for decoherence described above will be

usually only satisfied in an approximate way. Approximate decoherence is

typically achieved through a mechanism which was proposed by Gell-Mann

and Hartle [26, 27 ]. To see how this works, note that, if we assume coarse-
grainings of characteristic sizes s [see (2.2 0) ], and using (2.1 0), we can write

the decoherence function (2.23) as

$c({qÅ +}, {qÅ 2 })(t1,...,tN)

. # {IqÅ 1 },{IqÅ 2 }

$ [q( 0)
1 ]$ [q( 0)

2 ] p
N

k 5 1

$ [q(k)
1 ]$ [q(k)

2 ]r s(q
( 0)
1 i , q( 0)

2 i; ti) d (q(N)
1 f 2 q(N)

2 f )

3 d (q(k 2 1)
1 (tk) 2 q(k)

1 (tk)) d (q(k 2 1)
2 (tk) 2 q(k)

2 (tk))

3 g (q(k)
1 (tk) 2 qÅ 1 k) g (q(k)

2 (tk) 2 qÅ 2 k) p
N

k 5 0

exp H i

"
Seff [q(k)

1 , q(k)
2 ] J (2.35)

where each path integration * $ [q(k)
6 ], for k 5 0, . . . , N, is over paths q(k)

6

(t) with t P [tk , tk 1 1 ], with t 0 [ ti and tN 1 1 [ tf , and we have used a notation

to indicate that these paths are restricted to pass through the cells IqÅ 6 k
at the

instants tk , for k 5 1, . . . , N. From (2.13), the modulus of each factor

exp{(i/ " )Seff [q(k)
1 , q(k)

2 ]} in the last expression is exp{ 2 (1/ " ) Im Seff
IF [q(k)

1 ,
q(k)

2 ]}. Then, if for every k 5 0, . . . , N, Im Seff
IF [q(k)

1 , q(k)
2 ], which is always

positive or zero, is much larger than " whenever the differences ) q(k)
1 2

q(k)
2 ) are larger than some ª cutoffº sizes d(k), the integrand in (2.35) will be

only nonnegligible for ) q(k)
1 2 q(k)

2 ) # d (k). If the characteristic sizes s of the

coarse-graining satisfy s À d(k), then the ª off-diagonal º elements of

$c({qÅ +}, {qÅ 2 })(t1,...,tN) are negligible and one has approximate decoherence
[26, 27]. We should stress that Seff

IF [q+, q 2 ] is the result of integrating out both

the ª externalº environment degrees of freedom and also the system degrees

of freedom which are ª not accessibleº to the observations (the ª internalº

environment). In general, these two integrations play an important role in
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the achievement of this sufficient condition for approximate decoherence. A

characterization of the degree of approximate decoherence has been given

in ref. 31 (see also refs. 29, 28).
Typically, d(k) can be estimated in terms of D tk [ tk 1 1 2 tk. When this

is the case, one usually finds that the Gell-Mann and Hartle mechanism for

approximate decoherence works provided all the time intervals satisfy D tk $
D tc , k 5 0, . . . , N, where D tc is sufficiently larger than some characteristic

decoherence time scale tD (tD can be written in terms of s and some parameters

characterizing the environment and the system±environment couplings) [26,
27, 30]. For D tc one should take the smallest value compatible with a specified

degree of approximate decoherence. In this sense, we can think of a coarse-

graining as characterized both by the sizes s and by the time scale D tc.

2.4. Effective Equations of Motion for the System

Assuming that the mechanism for approximate decoherence described

in the previous subsection works, an approximate effective description of the

coarse-grained system variables in terms of a set of random variables [in the

sense of Eq. (2.31) ] is available, at least for instants of time satisfying D tk $
D tc , for k 5 0, . . . , N. The corresponding probability distribution

3qÅ ({qÅ })(t1,...,tN) is given by the diagonal elements of the decoherence function
(2.22). We shall next make an estimation of this probability distribution. This

follows essentially the derivation of Gell-Mann and Hartle [26, 27 ]. For

alternative derivations for more specific models, see refs. 28, 31, and 32.

Introducing the new variables q D [ q+ 2 q 2 and q S [ 1±2 (q+ 1 q 2 ), and

similarly for qÅ 6 k, and assuming that s À d(k), note first, from (2.35), that
the restrictions on the integration over q D coming from the coarse-graining

can be neglected in the diagonal elements of this decoherence function.

Therefore, using (2.23) and (2.1 0), and writing Seff [q+, q 2 ] [ Seff [q D , q S ],

we get

3qÅ ({qÅ S })(t1,...,tN) . # $ [q S ] p
N

k 5 1

g 2(q S (tk) 2 qÅ S k)3f [q S ] (2.36)

where

3f [q S ] [ # q D (t f ) 5 0

$ [q D ]r s 1 q S i 1
1

2
q D i, q S i 2

1

2
q D i; ti 2

3 exp H i

h
Seff [q D , q S ] J (2.37)

At this stage, we introduce two simplifications in our analysis. First,
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we restrict our evaluation to coarse-grained system variables having signifi-

cance only up to certain scales, larger enough than s so that the random

variables qÅ k can be well approximated by continuous random variables. This
approximation can be implemented with the use of a set of approximate

projection operators PÃqÅ (t), with qÅ being continuous variables, which satisfy

the properties (2.21) in an approximate way (see refs. 31 and 32 for an

example). Then, all the sums ( {qÅ } can be replaced by integrals * P N
k 5 1 dqÅ k

and the functions 3qÅ ({qÅ })(t1,...,tN) become probability densities. Second, as

long as we are only interested in the dynamics of the system on time scales
much larger than D tc ( D tc is proportional to the decoherence time scale tD ,

which is typically extremely small; see refs. 25, 39, and 43 for some exam-

ples), we can take the continuous-time limit in (2.36). In order to do so,

consider the instants tk [ ti 1 k D t, k 5 0, . . . , N 1 1, with D t [ (tf 2 ti)/
(N 1 1). Introducing functions qÅ (t) such that qÅ (tk) 5 qÅ k (assumed now to be

continuous variables), and letting N ® ` in (2.36) (replace qÅ S k by qÅ k), with
(tf 2 ti) maintained finite (thus, D t ® 0), we get a probability distribution

functional associated to some stochastic variables qÅ (t) [5]:

3qÅ [qÅ ] . # $ [q S ]g 2 [q S 2 qÅ ]3f [q S ] (2.38)

where g [q ] is the functional corresponding to P N
k 5 1 g (q(tk)) in the limit N ®

` [some redefinitions in the parameters entering in the function g (q) may
be needed in order that such a limit is well defined; see refs. 32 and 28 for

an explicit example of how this limit is taken]. Notice that, if we take the

limit to the continuous in time and in the variables qÅ k in (2.3 0), we get a

functional F qÅ [j ] which is the functional Fourier transform of 3qÅ [qÅ ]. Hence,

F qÅ [j ] can be interpreted as the characteristic functional for the stochastic
variables qÅ (t) [5]. From the probability functional (2.38) or, equivalently,

from the associated characteristic functional [by functional derivation with

respect to the sources j(t) ], we can compute the Green functions

Gn1 ? ? ? nr
c m1 ? ? ? ms(t81, . . . , t8r ; t 91, . . . , t 9s) with each of the instants in {t81, . . . , t8r} being

separated from ti and from the remaining instants in this set by intervals

larger enough than D tc , and similarly for the instants in {t 91, . . . , t 9s }.
We can get a good approximation to the path integral (2.37) by expanding

Seff [q D , q S ] in powers of q D and neglecting higher than quadratic terms, i.e.,

we make a Gaussian approximation in this path integral. This expansion can

be made using (2.13) and writing Seff
IF [q+, q 2 ] [ Seff

IF [q D , q S ]. In this expansion,

the dependence of Seff [q D , q S ] on the velocities qÇ D (t) (we assume that there

is no dependence on time derivatives of higher order)6 gives rise, after
integration by parts, to boundary terms proportional to q D i (we use that q D f 5

6 We understand that a term depends on qÇ D (t) if it does so before any integration by parts.
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0). For instance, assuming that Seff
s [q ] 5 * dt Ls(q(t), qÇ (t), t), in the expansion

of the terms Seff
s we find a boundary term 2 ps(q S i, qÇ S i, ti)q D i, where ps [ - Ls /

- qÇ are the canonical momenta. Similarly, if Seff
IF depends on qÇ D (t), its expansion

will contain some boundary terms. However, since, in general, Seff
IF depends

nonlocally on q D (t) and q S (t), these terms will be more complicated. Note

that we are considering models slightly more general than the ones studied

by Gell-Mann and Hartle [26, 27 ] since we allow for the possibility of an

influence action depending on qÇ D (t) and qÇ S (t). The motivation for considering

such a generalization is that we are interested in field theory actions with
interaction terms depending on the derivatives of the fields.

One can show that, when expanding up to quadratic order in q D , the

general form for the boundary terms in Seff
IF is

2 F1 [q S ](ti)q D i 1 iF2 [q S ](ti)q
2
D i 1 i # dt q D (t)F3 [q S ](t, ti)q D i

where F1, F2, and F3 are real functionals of q S , which vanish when Seff
IF does

not depend on qÇ D (t). Finally, we get the following expansion:

Seff [q D , q S ] 5 Seff
s F q S 1

1

2
q D G 2 Seff

s F q S 2
1

2
q D G 1 Seff

IF [q D , q S ]

5 2 p1 [q S ](ti)q D i 1 iF2 [q S ](ti)q
2
D i

1 i # dt q D (t)F3 [q S ](t, ti)q D i 1 # dt q D (t)C [q S ](t)

1
i

2 " # dt dt8 q D (t)q D (t8)C2 [q S ](t, t8) 1 O(q3
D ) (2.39)

with

p1 [q ](ti) [ ps(qi , qÇ i , ti) 1 F1 [q ](ti), C [q ](t) [
d Seff

s [q ]

d q(t)
1 C1 [q ](t)

(2.4 0)

and

Ck [q S ](t1, . . . , tk) [ 1 " i 2
k 2 1

d kSeff
IF [q D , q S ]

d q D (t1) ? ? ? d q D , (tk) Z q D 5 0

(2.41)

where the functional derivatives with respect to q(t) are defined for variations

which keep the value of q(t) fixed at t 5 ti and t 5 tf.
Substituting the expansion (2.39) into Eq. (2.37), we get a Gaussian

path integral, which can be calculated. Note that, since Im Seff
IF $ 0, C2 [q ](t, t8)
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is positive semidefinite. In order for the Gaussian approximation that we

have carried out to be valid, we must assume in addition that C2 [q ](t, t8) is

strictly positive definite and, thus, det C2 [q ] Þ 0. We get

3f [q ] . NWi [q ][det(C2 [q ]/2 p " 2) ]2 1/2

3 exp H 2
1

2 # dt dt8 C [q ](t)C 2 1
2 [q ](t, t8)C [q ](t8) J (2.42)

where N is a normalization constant, C 2 1
2 is the inverse of C2 defined by

# dt 9 C2(t, t 9)C 2 1
2 (t9, t8) 5 d (t 2 t8) (2.43)

Wi [q ] [ W(q(ti), p [q ](ti), P [q ](ti); ti), with

W(q, p, P ; ti) [ # dq0

2 p " F exp 1 2 i

"
q 0p 2 exp 1 2 1

"
q2

0P 2 G
3 r s 1 qi 1

1

2
q 0, qi 2

1

2
q 0; ti 2 (2.44)

and

p [q ](ti) [ p1 [q ](ti) 1 " # dt dt8 F3 [q ](t, ti)C
2 1
2 [q ](t, t8)C [q ](t8)

P [q ](ti) [ F2 [q ](ti) 2
"
2 # dt dt8 F3 [q ](t, ti)C

2 1
2 [q ](t, t8)F3 [q ](t8, ti) (2.45)

Note that the function W defined in (2.44) is a generalization of the Wigner

function associated to the initial state of the system, and it reduces to the

ordinary Wigner function for P 5 0 [44]. Note that, in expression (2.42),

the momenta p [q ](ti) in this generalized Wigner function are in general differ-

ent from the canonical momenta ps(qi , qÇ i , ti). In the case of Seff
IF not depending

on the velocities qÇ D (t), one has p [q ](ti) 5 ps(qi , qÇ i , ti) and P [q ](ti) 5 0, thus

Wi [q ] is the standard Wigner function. From the definition (2.41), and using

the properties of Seff
IF [q+, q 2 ], we can see that

C1 [q ](t) 5
d Re Seff

IF [q+, q 2 ]

d q+(t) Z q 1 5 q 2 5 q

5
d Seff

IF [q+, q 2 ]

d q+(t) Z q 1 5 q 2 5 q

C2 [q ](t, t8) 5
"
2 F d 2 Im Seff

IF [q+, q 2 ]

d q+(t) d q+(t8)
2

d 2 Im Seff
IF [q+, q 2 ]

d q+(t) d q 2 (t8) G Z q 1 5 q 2 5 q

(2.46)

and then, from (2.40) and (2.13), we have
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C [q ](t) 5
d Seff [q+, q 2 ]

d q+(t) Z q 1 5 q 2 5 q

(2.47)

Substituting (2.42) into (2.38), we see that the only nonnegligible contri-

bution to the path integral in (2.38) comes from those paths which are not

very far from the paths q( 0)(t) which satisfy C [q( 0) ](t) 5 0, that is, which
satisfy the semiclassical equation (2.16). This implies that only those paths

qÅ (t) which remain always near the semiclassical paths q( 0)(t) will give a

nonnegligible value to 3qÅ [qÅ ]. In this sense, the mechanism proposed by Gell-

Mann and Hartle is a mechanism for decoherence and classicalization of

coarse-grained system variables. However, we see that, in general, 3qÅ [qÅ ] has

a complicated functional dependence on qÅ (t).
Let us study the deviations from a specific solution of the semiclassical

equation, that is, we now restrict consideration to those paths qÅ (t) which are

distributed around a given solution q( 0)(t) of the semiclassical equation. We

can now introduce stochastic variables D q(t) [ qÅ (t) 2 q( 0)(t) which describe

the deviations from q( 0)(t). The associated probability distribution functional
3 D q [D q ] is equal to 3qÅ [q

( 0) 1 D q ] up to a normalization factor, which, from

(2.38), is given by

3qÅ [q
( 0) 1 D q ] . # $ [q ] g 2 [q ] 3f [q(0) 1 D q 1 q ] (2.48)

In practice, it is difficult to work out the explicit dependence of the

probability distribution functional on the characteristic parameters of the

coarse-graining, s and D tc , even in simple models [28, 32 ]. Nevertheless, if

such parameters are small enough so that the values of 3f [q( 0) 1 D q 1 q ]

do not change very much for the different paths q(t) which give a nonnegligible
contribution in (2.48), the functional (2.48) can be approximated by 3f [q( 0)

1 D q ]. We can make a further approximation by expanding 3f [q( 0) 1 D q ]

around q( 0). This can be done by setting q S 5 q( 0) 1 D q in (2.39), expanding

in D q, and substituting the result for this expansion in (2.37). The result to

lowest nontrivial order is

3 D q [D q ] . N [q( 0) ]Wi [q
( 0) 1 D q ]exp H 2

1

2 # dt dt8 CL [q( 0) 1 D q ](t)

3 C 2 1
2 [q( 0) ](t, t8)CL [q( 0) 1 D q ](t8) J (2.49)

where N [q( 0) ] is a normalization factor and CL [q( 0) 1 D q ] is the expansion

of C [q( 0) 1 D q ] to linear order in D q. Notice that, in this probability functional,

the factor Wi [q
( 0) 1 D q ] contains all the contribution arising from the initial
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state of the system. This generalized Wigner function, even if computed

expanding around q( 0), will have in general a complicated nonlocal dependence

on D q except when Seff
IF is independent of qÇ D , in which case it reduces to the

standard Wigner function for the initial state of the system and depends only

on D qi and D qÇ i. If the deviations from q( 0) are small enough, we can approxi-

mate Wi [q
( 0) 1 D q ] . Wi [q

( 0) ]. Then, with these approximations, the variables

D q are distributed in such a way that CL [q( 0) 1 D q ](t) are Gaussian stochastic

variables characterized by

^ CL [q( 0) 1 D q ](t) & c 5 0,

(2.5 0)^ CL [q( 0) 1 D q ](t)CL [q( 0) 1 D q ](t8) & c 5 C2 [q( 0) ](t, t8)

Thus, the equation of motion for D q is the Langevin equation

CL [q( 0) 1 D q ](t) 1 j (t) 5 0 (2.51)

where j (t) is a Gaussian stochastic source with

^ j (t) & c 5 0, ^ j (t) j (t8) & c 5 C2 [q( 0) ](t, t8) (2.52)

We should mention that there are very simple models for quantum

Brownian motion in which all the actions involved are quadratic in their

variables and the interaction terms are independent of the velocities [4, 5, 9,
10, 26±28, 31, 37, 40]. For such models, assuming that the environment is

in an initial state of thermal equilibrium, the influence functional can be

computed exactly and it is Gaussian. The effective action of Feynman and

Vernon in these cases is exactly of the form (2.39), with C1 [q S ](t) linear in

q S , C2(t, t8) independent of q S , and F1 5 F2 5 F3 5 0. Thus, for these

models, expression (2.42) is actually exact. In these cases, with the approxima-
tion 3qÅ [qÅ ] . 3f [qÅ ], one can derive a Langevin equation for the stochastic

variables qÅ (t) without the need of introducing a specific solution q( 0) of the

semiclassical equation. This Langevin equation is simply C [qÅ ](t) 1 j (t) 5
0, with j (t) a Gaussian stochastic source with ^ j (t) & c 5 0 and ^ j (t) j (t8) & c 5
C2(t, t8). However, for models with more complicated actions, we are only
able to derive effective equations of motion for the deviations D q around a

given solution q( 0) of the semiclassical equation.

2.5. A Quick Method to Obtain the Langevin Equation

Starting with the effective action of Feynman and Vernon (2.13), there

is a quick way to obtain the Langevin equation (2.51) for the deviations D q
around a specific solution of the semiclassical equation. This method has

actually been extensively used in the literature in the context of quantum

Brownian motion [9, 11, 17 ] and also in the context of field theory [12,

18±21], including some models for gravity interacting with a scalar field
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[6±8, 13±16]. One starts with an expansion of this effective action around

a solution q( 0)(t) of the semiclassical equation up to quadratic order in perturba-

tions D q 6 satisfying D q+(ti) 5 D q 2 (ti) and D q+(tf) 5 D q 2 (tf) (in the simplest
models, in which this effective action is exactly quadratic in q+ and q 2 , one

works directly with the exact expression). From (2.39), it is easy to see that

the expansion for the influence action reads

Seff
IF [q( 0) 1 D q+, q( 0) 1 D q 2 ]

5 # dt( D q+(t) 2 D q 2 (t))C1 F q( 0) 1
1

2
( D q+ 1 D q 2 ) G (t)

1
i

2 " # dt dt8( D q+(t) 2 D q 2 (t))C2 [q( 0) ](t, t8)( D q+(t8)

2 D q 2 (t8)) 1 O( D q3) (2.53)

where it is understood that C1 has to be expanded up to linear order. Using

the identity, which follows from a Gaussian path integration,

exp H 2
1

2 " 2 # dt dt8( D q+(t) 2 D q 2 (t))C2 [q( 0) ](t, t8)( D q+(t8) 2 D q 2 (t8)) J
5 # $ [j ]3 j [j ] exp H i

" # dt j (t)( D q+(t) 2 D q 2 (t)) J (2.54)

where 3 j [j ] is the Gaussian probability distribution functional for the

Gaussian stochastic variables j (t) characterized by (2.52), that is,

3 j [j ]

exp H 2
1

2 # dt dt8 j (t)C 2 1
2 [q( 0) ](t, t8) j (t8) J

M

M [ $ [j ] exp 2 H 1

2 # d t d t 8 j Å ( t )C 2 1
2 [q( 0) ]( t , t 8) j Å ( t 8) J (2.55)

we can write in this approximation

) ^eff
IF [q( 0) 1 D q+, q( 0) 1 D q 2 ])

5 exp H 2
1

"
Im Seff

IF [q( 0) 1 D q+, q( 0) 1 D q 2 ] J
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5 K exp H i

" # dt j (t)( D q+(t) 2 D q 2 (t)) J L c (2.56)

where ^ ? & c means statistical average over the stochastic variables j (t). Thus, the

effect of the imaginary part of the influence action (2.53) on the corresponding

influence functional is equivalent to the averaged effect of the stochastic
source j (t) coupled linearly to the perturbations D q 6 (note that in the above

expressions the perturbations D q 6 are deterministic functions). Notice that

expression (2.54) or, equivalently, (2.56) gives the characteristic functional of

the stochastic variables j (t) [5 ]. The influence functional in the approximation

(2.53) can then be written as an statistical average over j :

^eff
IF [q( 0) 1 D q+, q( 0) 1 D q 2 ]

5 K exp H i

"
!eff

IF [D q+, D q 2 ; j ] J L c (2.57)

where

!eff
IF [D q+, D q 2 ; j ] [ ReSeff

IF [q( 0) 1 D q+, q( 0) 1 D q 2 ]

1 # dt j (t)( D q+(t) 2 D q 2 (t)) 1 O( D q3) (2.58)

where Re Seff
IF can be read from expression (2.53). The Langevin equation

(2.51) can be easily derived from the action

!eff [D q+, D q 2 ; j ] [ Seff
s [q( 0) 1 D q+ ] 2 Seff

s [q( 0) 1 D q 2 ]

1 !eff
IF [D q+, D q 2 ; j ] (2.59)

where Seff
s [q( 0) 1 D q 6 ] has to be expanded up to second order in the perturba-

tions D q 6 . That is,

d !eff [D q+, D q 2 ; j ]

d D q+(t) Z D q 1 5 D q 2 5 D q

5 0 (2.6 0)

leads to Eq. (2.51).

3. EFFECTIVE EQUATIONS OF MOTION FOR THE
GRAVITATIONAL FIELD

In this section, we shall apply the results of the previous section to

derive effective equations of motion for the gravitational field in a semiclassi-

cal regime. In order to do so, we will consider the simplest case of a linear
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real scalar field F coupled to the gravitational field. We restrict ourselves to

the case of fields defined on a globally hyperbolic manifold }.

In this case, we consider the metric field gab(x) as the system degrees
of freedom and the scalar field F (x) and also some ª high-momentumº gravita-

tional modes, considered as inaccessible to the observations, as the environ-

ment variables. Unfortunately, since the form of a complete quantum theory

of gravity interacting with matter is unknown, we do not know what these

ª high-momentumº gravitational modes are. Such a fundamental quantum

theory might not even be a field theory, in which case the metric and scalar
fields would not be fundamental objects. Thus, in this case, we cannot attempt

to evaluate the effective actions in Eq. (2.11) starting from the fundamental

quantum theory and integrating out the ª high-momentumº gravitational

modes. What we can do instead is to adopt the usual procedure when dealing

with an effective quantum field theory. That is, we shall take for the actions

Seff
s [g ] and Seff

se [g+, F +; g 2
, F 2 ] the most general local form compatible with

general covariance and with the properties of Seff
se [these properties are analo-

gous to those of SIF in Eq. (2.8) ] [35, 45 ]. The general form for Seff
s [g ] is

Seff
s [g ] 5 # d 4x ! 2 g F 1

16 p GB

(R 2 2 L B) 1 a BCabcdC
abcd 1 b B R2 1 . . . G

(3.1)

where R and Cabcd are, respectively, the scalar curvature and the Weyl tensor

associated to the metric gab, 1/GB , L B /GB , a B , and b B are bare coupling

constants, and the dots represent terms of higher order in the curvature

[because of the Gauss±Bonnet theorem in four spacetime dimensions, there

is no need to consider terms of second order in the curvature different from
those written in Eq. (3.1) ]. Since } is a globally hyperbolic manifold, we

can foliate it by a family of Cauchy hypersurfaces S t , labeled by a time

coordinate t. We use the notation x for spatial coordinates on each of these

hypersurfaces, and ti and tf for some initial and final times, respectively. The

integration domain for all the action terms must now be understood as a

compact region 8 of the manifold }, bounded by the hypersurfaces S ti and
S tf (i.e., as in the previous section, integrals in t are integrals between ti and tf).

For the matter part of the effective action, let us consider the follow-

ing ansatz:

Seff
se [g+, F +; g 2 , F 2 ] 5 Sm [g+, F + ] 2 Sm [g 2 , F 2 ] (3.2)

with

Sm [g, F ] [ 2
1

2 # d 4x ! 2 g [gab - a F - b F 1 (m2 1 j R) F 2 1 ? ? ? ] (3.3)

where j is a dimensionless coupling parameter of the field to the scalar
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curvature, and the dots stand for terms of higher order in the curvature and

in the number of derivatives of the scalar field. Self-interaction terms for the

scalar field could also be included, but, for simplicity, we shall ignore them
in this paper. One can see that general covariance and the properties of

Seff
se [g+, F +; g 2 , F 2 ] imply that imaginary terms and terms mixing the ª plusº

and ª minusº fields in this action must be necessarily nonlocal. Thus, within

a local approximation, the ansatz (3.2) is the most general form for this action.

We shall comment below on some limitations of this local approximation.

In order to simplify the analysis, we neglect the contributions of the
higher order terms not written in Eqs. (3.1) and (3.3). Assuming that the

mass of the scalar field is much smaller than the Planck mass, this is a good

approximation in a regime where all the characteristic curvature scales are

far enough from the Planck scales. The terms in the gravitational Lagrangian

density proportional to R2 and CabcdC
abcd need to be considered in order to

renormalize the matter one-loop ultraviolet divergences.
Assuming the form (3.2) for the matter part of the effective action, we

can now introduce the corresponding effective influence functional as in Eq.

(2.12). Let us assume that the state of the scalar field in the SchroÈ dinger

picture at the initial time t 5 ti is described by a density operator r Ãs(ti) [in

the notation of the previous section, this was r Ãs
e(ti), but here we drop the

index e to simplify the notation ]. If we now consider the theory of a scalar

field quantized in a classical background spacetime (}, gab) through the

action (3.3), to this state there would correspond a state in the Heisenberg

picture described by a density operator r Ã[g ]. Let { ) w (x) & s} be the basis of

eigenstates of the SchroÈ dinger-picture scalar field operator F Ãs(x): F Ãs(x) ) w & s

5 w (x) ) w & s. The matrix elements of r Ãs(ti) in this basis will be written as r i [w , w Ä ]
[ s ^ w ) r Ãs(ti) ) w Ä & s. We can now introduce the effective influence functional as

^eff
IF [g+, g 2

] [ # $ [F + ]$ [F 2 ]r i [F +(ti), F 2 (ti) ]

3 d [F +(tf) 2 F 2 (tf) ] ei(Sm [g 1 , F 1 ] 2 Sm [g 2 , F 2 ]) (3.4)

and the effective influence action will be given by

^eff
IF [g+, g 2 ] [ eiSeff

IF [g 1 ,g 2 ]

Of course, trying to show how the mechanism for decoherence and

classicalization of the previous section can work in this case would involve
some technical difficulties, such as introducing diffeomorphism-invariant

coarse-grainings and eliminating properly the gauge redundancy (with the

use of some suitable Faddeev±Popov method) in the path integrals. We are

not going to deal with such issues in this paper. We rather assume that
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they can be suitably implemented without changing the main results for the

effective equations of motion.

Expression (3.4) is actually formal; it is ill defined and must be regular-
ized in order to get a meaningful quantity for the influence functional. We

shall formally assume that we can regularize it using dimensional regulariza-

tion, that is, that we can give sense to Eq. (3.4) by dimensional continuation

of all the quantities that appear in this expression. We should mention that,

however, when performing specific calculations, the dimensional regulariza-

tion procedure may not be the most suitable one in all cases. In this sense,
one should understand the following derivation as being formal. Using dimen-

sional regularization, we must substitute the action Sm in (3.4) by some

generalization to n spacetime dimensions. This can be taken as

Sm [g, F n ] 5 2
1

2 # d nx ! 2 g [gab - a F n - b F n 1 (m2 1 j R) F 2
n ] (3.5)

where we use a notation in which we write an index n in all the quantities

that have different physical dimensions than the corresponding physical quan-
tities in the spacetime of four dimensions. The quantities that do not carry

an index n have the same physical dimensions as the corresponding ones in

four spacetime dimensions, although they should not be confused with such

physical quantities. A quantity with an index n can always be associated to

another one without an index n; these are related by some mass scale m ; for
instance, it is easy to see that F n 5 m (n 2 4)/2 F .

In order to write the effective equations for the metric field in dimensional

regularization, we need to substitute the action (3.1) by some suitable general-

ization to n spacetime dimensions. We take

Seff
s [g ] 5 m n 2 4 # d mx ! 2 g F 1

16 p GB

(R 2 2 L B)

1
2

3
a B(Rabcd Rabcd 2 Rab Rab) 1 b B R2 G (3.6)

where Rabcd is the Riemann tensor and, again, the mass parameter m has

been introduced in order to get the correct physical dimensions. Using the

Gauss±Bonnet theorem in four spacetime dimensions, one can see that the

action obtained by setting n 5 4 in (3.6) is equivalent to (3.1). The form of

the action (3.6) is suggested from the Schwinger ±DeWitt analysis of the
divergencies in the stress-energy tensor in dimensional regularization [46 ].

The effective action of Feynman and Vernon (2.13) is in our case given by

Seff [g+, g 2 ] 5 Seff
s [g+ ] 2 Seff

s [g 2 ] 1 Seff
IF [g+, g 2 ]. Since the action terms (3.5)

and (3.6) contain second-order derivatives of the metric, one should also add
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some boundary terms to them [33, 7 ]. The effect of these boundary terms is

simply to cancel out the boundary terms that appear when taking variations

of Seff [g+, g 2
] that keep the values of g 1

ab and g 2
ab fixed on the boundary of

8. They guarantee that we can obtain an expansion for Seff [g+, g 2 ] analogous

to (2.39), with no extra boundary terms coming from the integration by parts

of terms containing second-order derivatives of g D
ab [ g 1

ab 2 g 2
ab. Alterna-

tively, in order to obtain the effective equations for the metric [equations

analogous to (2.16) and (2.51) ], we can work with the action terms (3.5) and

(3.6) (without boundary terms) and neglect all boundary terms when taking
variations with respect to g 6

ab. From now on, all the functional derivatives

with respect to the metric must be understood in this sense.

3.1. The Semiclassical Einstein Equation

From the action (3.5), we can define the stress-energy tensor functional

in the usual way,

T ab [g, F n ](x) [
2

! 2 g(x)

d Sm [g, F n ]

d gab(x)
(3.7)

which yields

T ab [g, F n ] 5 , a F n , b F n 2 1±2 gab , c F n , c F n

2 1±2 gabm2 F 2
n 1 j (gabN 2 , a , b 1 Gab) F 2

n (3.8)

where , a is the covariant derivative associated to the metric gab, N [ , a , a,

and Gab is the Einstein tensor. Working in the Heisenberg picture, we can

now formally introduce the stress-energy tensor operator for a scalar field
quantized in a classical spacetime background, regularized using dimensional

regularization, as

TÃab
n [g ] [ T ab [g, F Ãn [g ]], TÃab [g ] [ m 2 (n 2 4)TÃab

n [g ] (3.9)

where F Ãn [g ](x) is the Heisenberg-picture field operator in n spacetime dimen-
sions, which satisfies the Klein±Gordon equation

(N 2 m2 2 j R) F Ãn 5 0 (3.1 0)

and where we use a symmetrical ordering (Weyl ordering) prescription for

the operators. Using Eq. (3.1 0), one can write the stress-energy operator in

the following way:

TÃab
n [g ] 5 1±2 { , a F Ãn [g ], , b F Ãn [g ]} 1 $ab [g ]F Ã2

n [g ] (3.11)

where $ab [g ] is the differential operator
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$ab
x [ ( j 2 1±4 )gab(x)Nx 1 j (Rab(x) 2 , a

x , b
x) (3.12)

with Rab the Ricci tensor. From the definitions (3.4), (3.7), and (3.9), one

can see that

2

! 2 g(x)

d Seff
IF [g+, g 2 ]

d g 1
ab(x) Z g 1 5 g

2 5 g

5 ^ TÃab
n (x) & [g ] (3.13)

where the expectation value is taken in the n-dimensional spacetime general-
ization of the state described by r Ã[g ].

As in Eq. (2.16), if we derive Seff [g+, g 2 ] with respect to g 1
ab and then

set g 1
ab 5 g 2

ab 5 gab, we get the semiclassical Einstein equation in dimen-

sional regularization:

1

8 p GB

(Gab [g ] 1 L Bgab) 2 1 43 a BDab 1 2 b BBab 2 [g ] 5 m 2 (n 2 4) ^ TÃab
n & [g ]

(3.14)

where the tensors Dab and Bab are defined as

Dab [
1

! 2 g

d
d gab # d nx ! 2 g(Rcdef R

cdef 2 Rcd Rcd)

5
1

2
gab(Rcdef R

cdef 2 Rcd Rcd 1 NR)

2 2RacdeRb
cde 2 2RacbdRcd 1 4RacRb

c 2 3NRab 1 , a , bR (3.15)

and

Bab [
1

! 2 g

d
d gab # d nx ! 2 gR2

5
1

2
gabR2 2 2RRab 1 2 , a , bR 2 2gabNR (3.16)

From equation (3.14), after renormalizing the coupling constants in order to

eliminate the divergencies in m 2 (n 2 4) ^ TÃab
n & [g ] in the limit n ® 4 and then

taking this limit, we will get the semiclassical Einstein equation in the physical

spacetime of four dimensions:

1

8 p G
(Gab [g ] 1 L gab) 2 2( a Aab 1 b Bab) [g ] 5 ^ TÃab

R & [g ] (3.17)

In the last equation 1/G, L /G, a , and b are renormalized coupling constants,

^ TÃab
R & [g ] is the renormalized expectation value of the stress-energy tensor

operator, and we have used that, for n 5 4, Dab 5 (3/2)Aab, with Aab the
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local curvature tensor obtained by functional derivation with respect to the

metric of the action term corresponding to the Lagrangian density CabcdC
abcd.

3.2. The Semiclassical Einstein ± Langevin Equation

According to the results of the previous section, assuming that some

suitably coarse-grained metric field satisfies the conditions for approximate
decoherence and that the approximations of Section 2.4 are valid in a certain

regime, small deviations from a given solution gab of the semiclassical Einstein

equation (3.17) can be described by linear stochastic perturbations hab to that

semiclassical metric. These perturbations satisfy a Langevin equation of

the form (2.51), which shall be called the semiclassical Einstein±Langevin

equation. Our next step will be to write the semiclassical Einstein±Langevin
equation in dimensional regularization. Let us assume that gab is a solution

of Eq. (3.14) in n spacetime dimensions. The semiclassical Einstein±Langevin

equation in dimensional regularization then has the form

1

8 p GB

(Gab
L [g 1 h ] 1 L B(gab 2 hab)) 2 1 43 a BDab

L 1 2 b BBab
L 2 [g 1 h ]

5 m 2 (n 2 4) ^ TÃab
n & L [g 1 h ] 1 2 m 2 (n 2 4) j ab

n (3.18)

where hab is a linear stochastic perturbation to gab, hab [ gacgbdhcd, that is,

gab 2 hab 1 O(h2) is the inverse of the metric gab 1 hab, and, as in the
previous section, we use an index L to denote an expansion up to linear order

in hab. In this equation, ^ TÃab
n & [g 1 h ] is the expectation value of TÃab

n [g 1 h ]

in the n-dimensional spacetime generalization of the state described by r Ã[g 1
h ], and j ab

n is a Gaussian stochastic tensor characterized by the correlators

^ j ab
n (x) & c 5 0, ^ j ab

n (x) j cd
n ( y) & c 5 N abcd

n [g ](x, y) (3.19)

with [see Eqs. (2.52) and (2.46) ]

2N abcd
n [g ](x, y) [

1

! 2 g(x) ! 2 g( y) F d 2 Im Seff
IF [g+, g 2 ]

d g 1
ab(x) d g 1

cd ( y)

2
d 2 Im Seff

IF [g+, g 2 ]

d g 1
ab(x) d g 2

cd ( y) G Z g 1 5 g
2 5 g

(3.2 0)

We can write Eq. (3.18) in a more explicit way by working out the
expansion ^ TÃab

n & L [g 1 h ]. Since, from Eq. (3.13), we have that

^ TÃab
n (x) & [g 1 h ]

5
2

! 2 det(g 1 h)(x)

d Seff
IF [g 1 h+, g 1 h 2 ]

d h 1
ab(x) Z h 1 5 h

2 5 h

(3.21)
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this expansion can be obtained from an expansion of the influence action

Seff
IF [g 1 h+, g 1 h 2

] up to second order in h 6
ab (in this expansion, we can

neglect boundary terms). At the same time, we can obtain a more explicit
expression for the noise kernel (3.2 0). To perform this expansion for the

influence action, we have to compute the first- and second-order functional

derivatives of Seff
IF [g+, g 2 ] and then set g 1

ab 5 g 2
ab 5 gab. If we do so using the

path integral representation (3.4), we can interpret these derivatives as expec-

tation values of operators in the Heisenberg picture for a scalar field quantized

in a classical spacetime background (}, gab) as, for instance, in expression
(3.13). The relevant second-order derivatives are

1

! 2 g(x) ! 2 g( y)

d 2Seff
IF [g+, g 2

]

d g 1
ab(x) d g 1

cd ( y) Z g 1 5 g
2 5 g

5 2 Habcd
Sn [g ](x, y) 2 Kabcd

n [g ](x, y) 1 iN abcd
n [g ](x, y),

1

! 2 g(x) ! 2 g( y)

d 2Seff
IF [g+, g 2

]

d g 1
ab(x) d g 2

cd ( y) Z g 1 5 g
2 5 g

5 2 Habcd
An [g ](x, y) 2 iN abcd

n [g ](x, y) (3.22)

with

N abcd
n [g ](x, y) 5

1

8
^ {TÃab

n (x) 2 ^ TÃab
n (x) & , TÃcd

n ( y) 2 ^ TÃcd
n ( y) & } & [g ]

Habcd
Sn [g ](x, y) 5

1

4
Im ^ T*(TÃab

n (x)TÃcd
n ( y)) & [g ]

Habcd
An [g ](x, y) 5 2

i

4 K 1

2
[TÃab

n (x), TÃcd
n ( y) ]L [g ]

Kabcd
n [g ](x, y) 5

2 1

! 2 g(x) ! 2 g( y) K d 2Sm [g, F n ]

d gab(x) d gcd ( y) Z F n 5 F Ãn L [g ] (3.23)

using again a symmetrical ordering (Weyl ordering) prescription for the

operators in the last of these expressions. All the expectation values in these

expressions are in the n-dimensional spacetime generalization of the state

described by r Ã[g ]. In the above equations, { ? , ? } and [? , ? ] mean, respectively,
the anticommutator and the commutator, and we use the symbol T* to denote

that, first, we have to time order the field operators F Ãn and then apply the

derivative operators that appear in each term of the product Tab(x)Tcd( y),

where Tab is the functional (3.8). For instance,
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T*( , a
x F Ãn(x) , b

x F Ãn(x) , c
y F Ãn( y) , d

y F Ãn( y))

5 lim
x1,x2 ® x

x3,x4 ® y

, a
x1 ,

b
x2 ,

c
x3 ,

d
x4T( F Ãn(x1) F Ãn(x2) F Ãn(x3) F Ãn(x4)), (3.24)

where T is the usual time ordering. Notice that all the kernels that appear in

expressions (3.22), are real.

In fact, from (3.23) we see that the noise kernel N abcd
An and also the

kernel Habcd
An , are free of ultraviolet divergences in the limit n ® 4. This is

because, for a linear quantum field, the ultraviolet divergencies in

^ TÃab
n (x)TÃcd

n ( y) & are the same as those of ^ TÃab
n (x) & ^ TÃcd

n ( y) & . Therefore, in the

semiclassical Einstein±Langevin equation (3.18), one can perform exactly

the same renormalization procedure as the one for the semiclassical Einstein
equation (3.14). After this renormalization procedure, Eq. (3.18) will yield

the semiclassical Einstein±Langevin equation in the physical spacetime (n 5
4). It can be written as

1

8 p G
(Gab

L [g 1 h ] 1 L (gab 2 hab)) 2 2( a Aab
L 1 b Bab

L ) [g 1 h ]

5 ^ TÃab
R & L [g 1 h ] 1 2 j ab (3.25)

where j ab is a Gaussian stochastic tensor with

^ j ab(x) & c 5 0, ^ j ab(x) j cd( y) & c 5 N abcd [g ](x, y) (3.26)

where N abcd [ limn ® 4 m 2 2(n 2 4) N abcd
n . Notice from (3.23) that the noise kernel

Nabcd [g ](x, y) gives a measure of the lowest order fluctuations of the scalar

field stress-energy tensor around its expectation value. Thus, the stochastic

metric perturbations hab, solution of the semiclassical Einstein±Langevin

equation (3.25), account for the backreaction of such matter stress-energy
fluctuations on the spacetime geometry. For a more detailed analysis of the

semiclassical Einstein±Langevin equation and some of its applications, see

ref. 47.

Going back to the expressions in dimensional regularization, which may

be useful for calculational purposes, we can now write the expansion of the

influence action around a given metric gab. From (3.13) and (3.22), taking
into account that Seff

IF [g, g ] 5 0 and that Seff
IF [g 2 , g+ ] 5 2 Seff*IF [g+, g 2 ], we get

Seff
IF [g 1 h+, g 1 h 2 ]

5
1

2 # d nx ! 2 g(x) ^ TÃab
n (x) & [g ](h 1

ab(x) 2 h 2
ab(x))

2
1

2 # d nx d ny ! 2 g(x) ! 2 g( y)(Habcd
Sn [g ](x, y)
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1 Kabcd
n [g ](x, y))(h 1

ab(x)h 1
cd( y) 2 h 2

ab(x)h 2
cd ( y))

2
1

2 # d nx d ny ! 2 g(x) ! 2 g( y)Habcd
An [g ](x, y)(h 1

ab(x)h 2
cd ( y)

2 h 2
ab(x)h 1

cd ( y))

1
i

2 # d nx d ny ! 2 g(x) ! 2 g( y)N abcd
n [g ](x, y)(h 1

ab(x)

2 h 2
ab(x))(h 1

cd ( y) 2 h 2
cd ( y)) 1 O(h3) (3.27)

From (3.23), it is easy to see that the kernels satisfy the symmetry relations

Habcd
Sn (x, y) 5 Hcdab

Sn ( y, x), Habcd
An (x, y) 5 2 Hcdab

An ( y, x), (3.28)

Kabcd
n (x, y) 5 Kcdab

n ( y, x)

Using these relations and defining

Habcd
n (x, y) [ Habcd

Sn (x, y) 1 Habcd
An (x, y) (3.29)

we can write the expansion (3.27) as

Seff
IF [g 1 h+, g 1 h 2

]

5
1

2 # d nx ! 2 g(x) ^ TÃab
n (x) & [g ][hab(x) ]

2
1

2 # d nx d ny ! 2 g(x) ! 2 g( y) [hab(x) ](Habcd
n [g ](x, y)

1 Kabcd
n [g ](x, y)){hcd ( y)}

1
i

2 # d nx d ny ! 2 g(x) ! 2 g( y) [hab(x) ]N abcd
n [g ](x, y) [hcd ( y) ]

1 O(h3) (3.3 0)

where we have used the notation

[hab ] [ h 1
ab 2 h 2

ab, {hab} [ h 1
ab 1 h 2

ab (3.31)

Using this expansion and noting, from (3.23), that

Kabcd
n [g ](x, y) 5 2

1

4
^ TÃab

n (x) & [g ]
gcd(x)

! 2 g( y)
d n(x 2 y)

2
1

2

1

! 2 g( y) K d T ab [g, F n ](x)

d gcd ( y) Z F n 5 F Ãn L [g ] (3.32)

we get, from (3.21),
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^ TÃab
n (x) & L [g 1 h ] 5 ^ TÃab

n (x) & [g ] 1 ^ TÃ(1)ab
n [g; h ](x) & [g ]

2 2 # d ny ! 2 g( y) Habcd
n [g ](x, y)hcd ( y) (3.33)

where the operator TÃ(1)ab
n is defined from the term of first order in the

expansion T ab
L [g 1 h, F n ] as

T ab
L [g 1 h, F n ] 5 T ab [g, F n ] 1 T (1)ab [g, F n; h ], (3.34)

TÃ(1)ab
n [g; h ] [ T (1)ab [g, F Ãn [g ]; h ]

using, as always, a Weyl ordering prescription for the operators in the last
definition. Note that the third term on the right-hand side of Eq. (3.33) is

due to the dependence on hcd of the field operator F Ãn [g 1 h ] and of the

dimensional regularized version of the density operator r Ã[g 1 h ].

Substituting (3.33) into (3.18), and taking into account that gab satisfies

the semiclassical Einstein equation (3.14), we can write the Einstein±
Langevin equation (3.18) as

1

8 p GB

(G(1)ab [g; h ](x) 2 L Bhab(x)) 2
4

3
a BD(1)ab [g; h ](x) 2 2 b BB(1)ab [g; h ](x)

2 m 2 (n 2 4) ^ TÃ(1)ab
n [g; h ](x) & [g ]

1 2 # d ny ! 2 g( y) m 2 (n 2 4)Habcd
n [g ](x, y)hcd( y) 5 2 m 2 (n 2 4) j ab

n (x) (3.35)

In the last equation we have used the superior index (1) to denote the terms

of first order in the expansions Gab
L [g 1 h ], Dab

L [g 1 h ], and Bab
L [g 1 h ]. Thus,

for instance, Gab
L [g 1 h ] 5 Gab [g ] 1 G(1)ab [g; h ]. The explicit expressions

for the tensors T(1)ab [g, F n; h ], G(1)ab [g; h ], D(1)ab [g; h ], and B (1)ab [g; h ] are given

in the Appendix. From T(1)ab [g, F n; h ], we can write an explicit expression for

the operator TÃ(1)ab
n . Using the Klein±Gordon equation (3.1 0) and expressions

(3.11) and (3.12) for the stress-energy operator, we can write this operator as

TÃ(1)ab
n [g; h ] 5 1 12 gabhcd 2 d a

ch
b
d 2 d b

ch
a
d 2 TÃcd

n [g ] 1 ^ab [g; h ] F Ã2
n [g ] (3.36)

where ^ab [g; h ] is the differential operator

^ab [ 1 j 2
1

4 2 1 hab 2
1

2
gabhc

c 2 N 1
j
2

[, c , ahb
c 1 , c , bha

c 2 Nhab

2 , a , bhc
c 2 gab , c , dhcd 1 gabNhc

c 1 ( , ahb
c 1 , bha

c 2 , ch
ab

2 2gab , dhcd 1 gab , ch
d
d) , c 2 gabhcd , c , d ] (3.37)
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and it is understood that indices are raised with the background inverse metric

gab and that all the covariant derivatives are associated to the metric gab.

Substituting expression (3.36) into Eq. (3.35) and using the semiclassical
equation (3.14) to get an expression for m 2 (n 2 4) ^ TÃab

n & [g ], we can finally write

the semiclassical Einstein±Langevin equation in dimensional regularization as

1

8 p GB F G(1)ab 2
1

2
gabGcdhcd 1 Gachb

c 1 Gbcha
c 1 L B 1 hab 2

1

2
gab hc

c 2 G (x)

2
4

3
a B 1 D(1)ab 2

1

2
gabDcdhcd 1 Dachb

c 1 Dbcha
c 2 (x)

2 2 b B 1 B (1)ab 2
1

2
gabBcdhcd 1 Bachb

c 1 Bbcha
c 2 (x)

2 m 2 (n 2 4)^ab
x ^ F Ã2

n(x) & [g ] 1 2 # d ny ! 2 g( y) m 2 (n 2 4)H abcd
n [g ](x, y)hcd ( y)

5 2 m 2 (n 2 4) j ab
n (x) (3.38)

where the tensors Gab, Dab, and Bab are computed from the semiclassical
metric gab, and where we have omitted the functional dependence on gab and

hab in G(1)ab, D(1)ab, B(1)ab, and ^ab to simplify the notation. Notice that in

Eq. (3.38) all the ultraviolet divergences in the limit n ® 4, which shall be

removed by renormalization of the coupling constants, are in ^ F Ã2
n(x) & and the

symmetric part Habcd
Sn (x, y) of the kernel Habcd

n (x, y), whereas, as we have

pointed out above, the kernels N abcd
n (x, y) and Habcd

An (x, y) are free of ultraviolet
divergences. Once we have performed such a renormalization procedure,

setting n 5 4 in this equation will yield the physical semiclassical Einstein±

Langevin equation (3.25). Note that, due to the presence of the kernel

Habcd
n (x, y) in Eq. (3.38), such an Einstein±Langevin equation will be nonlocal

in the metric perturbation.

3.3. Discussion

We have seen that effective equations of motion for the metric field of

the form (3.17) and (3.25) follow from the local approximation (3.2) for the

effective action describing the ª effective interactionº of the metric and the

scalar field. A more realistic evaluation of this effective action starting from

a fundamental theory of quantum gravity would certainly lead to some real and
imaginary nonlocal terms in this action. In some situations, the contribution of

these terms to the effective equations of motion for the metric (note that they

would also give some extra terms in the semiclassical equation) might not be

negligible and, in any case, one would expect that their role in the decoherence
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mechanism for the metric field would be important. This would represent

nontrivial effects coming from the ª high-momentumº modes of quantum

gravity, which are not part of the gravitational field described by the classical
stochastic metric gab 1 hab, but which can be a source of this gravitational

field in the same way as the matter fields. The contribution of these neglected

terms to the equations for the background metric gab and for the stochastic

metric perturbation hab would be similar to the contribution of the scalar field

through its stress-energy operator, but with this operator replaced with some

ª effectiveº stress-energy operator of such primordial ª high-momentumº grav-
itational modes coupled to the scalar field. These equations would take the

form (3.17) and (3.25) only when the effect of this ª effectiveº stress-energy

tensor on the classical spacetime geometry can be neglected. A way of

partially modeling this effect would consist in replacing the stress-energy

operator TÃab
n [g ] by TÃab

n [g ] 1 tÃab
n [g ], where tÃab

n [g ] is the stress-energy tensor

of gravitons quantized in classical spacetime background (}, gab) [33 ].
We end this paper with some comments on the relation between the

semiclassical Einstein±Langevin equation (3.25) and the Langevin-type equa-

tions for stochastic metric perturbations recently derived in the literature

[6±8, 13±16 ]. In these previous derivations, one starts with the influence

functional (3.4), with the state of the scalar field assumed to be an ª inº
vacuum or an ª inº thermal state, and computes explicitly the expansion for

the corresponding influence action around a specific metric background. One

then applies the method of Section 2.5 to derive a Langevin equation for the

perturbations to this background. As we have seen in Section 2.5, this method

yields the same equations as the one used in this section. However, in most

previous derivations, one starts with a ª minisuperspaceº model and thus the
metric perturbations are assumed from the beginning to have a restrictive

form. In those cases, the derived Langevin equations do not correspond

exactly to our equation (3.25), but to a ª reducedº version of this equation,

in which only some components of the noise kernel in Eq. (3.26) (or some

particular combinations of them) influence the dynamics of the metric pertur-

bations. Only those equations which have been derived starting from a com-
pletely general form for the metric perturbations are actually particular cases,

computed explicitly, of the semiclassical Einstein±Langevin equation (3.25)

[13, 14, 16 ].

APPENDIX: EXPANSIONS AROUND A BACKGROUND METRIC

For a metric of the form gÄ ab [ gab 1 hab, where hab is a small perturbation

to a background metric gab, we list the expansions of metric functionals

around the background metric up to linear order in the perturbation. In the

following expressions, all the tilded quantities refer to functionals constructed
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with the metric gÄ ab, whereas that the analogous untilded ones are constructed

with the background metric gab. In particular, , Ä a and , a are, respectively,

the covariant derivatives associated to the metric gÄ ab and to the metric gab,
and , Ä a [ gÄ ab , Ä b , NÅ [ , Ä a , Ä a , , a [ gab , b , N [ , a , a , where gÄ ab and gab

are, respectively, the inverses of gÄ ab and gab. We shall also raise indices in

the metric perturbation with the inverse background metric gab: ha
b [ gachcb

and hab [ gac gbd hcd. We have

gÄ ab 5 gab 2 hab 1 O(h2) (A.1)

! 2 gÄ 5 ! 2 g 1 1 1 1±2 ha
a 1 O(h2) 2 (A.2)

G Ä c
ab 5 G c

ab 1 1±2 ( , ah
c
b 1 , bh

c
a 2 , chab) 1 O(h2) (A.3)

For a scalar function f,

, Ä a , Ä b f 5 , a , b f 2 1±2 , cf ( , ahbc 1 , bhac 2 , chab) 1 O(h2) (A.4)

NÅ f 5 N f 2 , a , bf hab 2 , af ( , bhab 2 1±2 , ah
b
b) 1 O(h2) (A.5)

, Ä a , Ä bf 5 , a , bf 2 , a , cf hb
c 2 , b , cf ha

c

2 1±2 , cf ( , ahb
c 1 , bha

c 2 , ch
ab) 1 O(h2) (A.6)

For a tensor tab,

NÅ tab 5 N tab 2 , c , dtabhcd 1 (gae , ctdb 1 gbe , ctad 2 1±2 gcd , etab)

3 ( , chde 1 , dhce 2 , ehcd)

1 1±2 (gactdb 1 gbctad)( , e , d hce 1 Nhcd 2 , e , chde) 1 O(h2) (A.7)

For the curvature tensors,

RÄ ab 5 Rab 1 1±2 ( , c , ahbc 1 , c , bhac 2 Nhab 2 , a , bh
c
c) 1 O(h2) (A.8)

RÄ a
b 5 Ra

b 2 Rc
bh

a
c 1 1±2 ( , c , bh

a
c 1 , c , ahbc 2 Nha

b 2 , b , ahc
c) 1 O(h2) (A.9)

RÄ 5 R 2 Rabhab 1 , a , bhab 2 Nha
a 1 O(h2) (A.1 0)

RÄ ab 5 Rab 2 Rachb
c 2 Rbcha

c

1 1±2 ( , c , ahb
c 1 , c , bha

c 2 Nhab 2 , a , bhc
c) 1 O(h2) (A.11)

GÄ ab 5 Gab 1 G(1)ab 1 O(h2)

with
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G(1)ab 5 2 Rachb
c 2 Rbcha

c 1 1±2 [Rhab 1 gabRcdhcd 1 , c , ahb
c

1 , c , bha
c 2 Nhab 2 , a , bhc

c 1 gab(Nhc
c 2 , c , dhcd) ]

5 2 Gachb
c 2 Gbcha

c 1 1±2 [2 Rhab 1 gabRcdhcd 1 , c , ahb
c

1 , c , bha
c 2 Nhab 2 , a , bhc

c 1 gab(Nhc
c 2 , c , dhcd) ] (A.12)

RÄ a
bcd 5 Ra

bcd 1 1±2 ( , c , bh
a
d 1 , c , dh

a
b 1 , d , ahbc

2 , c , ahbd 2 , d , bh
a
c 2 , d , ch

a
b) 1 O(h2) (A.13)

RÄ abcd 5 Rabcd 1 1±2 (Re
bcd hae 2 Re

acd hbe)

1 1±2 ( , c , bhad 1 , d , ahbc 2 , c , ahbd 2 , d , bhac)

1 O(h2) (A.14)

RÄ abcd 5 Rabcd 2 1±2 (2Rabcehd
e 1 2Rabedhc

e 1 Raecdhb
e 1 Rebcdha

e)

1 1±2 ( , c , bhad 1 , d , ahbc 2 , c , ahbd 2 , d , bhac)

1 O(h2) (A.15)

, Ä a , Ä bRÄ 5 , a , bR 2 , a , b(Rcdhcd) 1 , a , b , c , dhcd

2 , a , bNhc
c 2 , a , cRhb

c 2 , b , cRha
c

2 1±2 , cR( , ahb
c 1 , bha

c 2 , ch
ab) 1 O(h2) (A.16)

NÄ RÄ 5 NR 2 N(Rabhab) 1 N , a , bhab 2 N2ha
a 2 , a , bR hab

2 , aR( , bhab 2 1±2 , ah
b
b) 1 O(h2) (A.17)

NÅ RÄ ab 5 NRab 2 N(Rachb
c 1 Rbcha

c) 2 , c , dRab hcd

2 , cRab( , dhcd 2 1±2 , chd
d) 1 , cRad( , ch

b
d 1 , dh

b
c 2 , bhcd)

1 , cRbd( , ch
a
d 1 , dh

a
c 2 , ahcd)

1 1±2 Rac( , d , ch
b
d 1 Nhb

c 2 , d , bhcd)

1 1±2 Rbc( , d , ch
a
d 1 Nha

c 2 , d , ahcd)

1 1±2 (N , c , ahb
c 1 N , c , bha

c 2 N2hab 2 N , a , bhc
c)

1 O(h2) (A.18)

RÄ 2 5 R2 2 2RRabhab 1 2R , a , bhab 2 2RNha
a 1 O(h2) (A.19)
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RÄ RÄ ab 5 RRab 2 RRachb
c 2 RRbcha

c 2 RabRcdhcd

1 1±2 R( , c , ahb
c 1 , c , bha

c 2 Nhab 2 , a , bhc
c)

1 Rab( , c , dhcd 2 Nhc
c) 1 O(h2) (A.2 0)

RÄ abRÄ ab 5 RabRab 2 2RabRc
ahbc 1 Rab(2 , c , ahbc 2 Nhab 2 , a , bh

c
c)

1 O(h2) (A.21)

RÄ acRÄ b
c 5 RacRb

c 2 RacRbdhcd 2 Rcd(Ra
ch

b
d 1 Rb

c ha
d)

1 1±2 Rac( , d , ch
b
d 1 , d , bhcd 2 Nhb

c 2 , c , b hd
d)

1 1±2 Rbc( , d , ch
a
d 1 , d , ahcd 2 Nha

c 2 , c , ahd
d)

1 O(h2) (A.22)

RÄ abcdRÄ abcd 5 RabcdRabcd 2 2RabcdRabceh
e
d 1 4Rabcd , c , bhad 1 O(h2) (A.23)

RÄ acbdRÄ cd 5 RacbdRcd 1 1±2 Rcd(R
acdehb

e 1 Rbcdeha
e 2 2Racbehd

e 2 2Rbcaehd
e)

1 1±2 Racbd( , e , chde 1 , e , dhce 2 Nhcd 2 , c , dh
e
e)

2 1±4 Rcd(2 , c , dhab 1 , a , bhcd 1 , b , ahcd 2 2 , a , chbd

2 2 , b , chad) 1 O(h2) (A.24)

RÄ acdeRÄ b
cde 5 RacdeRb

cde 2 1±2 (RacdeRf
cdeh

b
f 1 RbcdeR f

cdeh
a
f ) 2 2RacdeRb

cdfh
f
e

1 1±2 Racde( , d , ch
b
e 1 , e , bhcd 2 , e , ch

b
d 2 , d , bhce)

1 1±2 Rbcde( , d , ch
a
e 1 , e , ahcd 2 , e , ch

a
d 2 , d , ahce)

1 O(h2) (A.25)

BÄ ab 5 Bab 1 B(1)ab 1 O(h2)

with

B(1)ab 5 2 1±2 R2hab 2 gabRRcdhcd 1 2R(Rachb
c 1 Rbcha

c) 1 R , a , bhc
c

1 2Rab(Rcdhcd 1 Nhc
c 2 , c , dhcd) 1 gab , c , dRhcd 1 2 NRhab
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2 2 , c , aRhb
c 2 2 , c , bRha

c 1 gab , c , d(Rhcd)

2 , c [R(gab , ch
d
d 1 , ahb

c 1 , bha
c 2 , ch

ab) ]

1 2gabN(Rcdhcd 1 Nhc
c 2 , c , dhcd)

2 2 , a , b(Rcdhcd 1 Nhc
c 2 , c , dhcd) (A.26)

DÄ ab 5 Dab 1 D(1)ab 1 O(h2)

with

D(1)ab 5 1±2 (RcdRcd 2 RcdefRcdef)h
ab 1 2Rcdef(R

acdehbf 1 Rbcdehaf)

2 Rcd(4Rachbd 1 4Rbchad 1 Racdehb
e 1 Rbcdeha

e 2 2Racbehd
e 2 2Rbcaehd

e)

1 gab(RcfRcg 2 RcdefRcdeg)h
g
f 2 4RacRbdhcd 1 4RacdeRb

cdf hf
e

1 1±2 Rcd(2 , c , dh
ab 1 , a , bhcd 1 , b , ahcd 2 2 , a , ch

b
d 2 2 , b , ch

a
d)

1 1±2 Rac( , d , ch
b
d 2 7Nhb

c 1 7 , d , bhcd 2 4 , c , bhd
d)

1 1±2 Rbc( , d , ch
a
d 2 7Nha

c 1 7 , d , ahcd 2 4 , c , ahd
d)

2 Racde( , d , ch
b
e 1 , e , bhcd 2 , d , bhce 2 , e , ch

b
d)

2 Rbcde( , d , ch
a
e 1 , e , ahcd 2 , d , ahce 2 , e , ch

a
d)

2 1±2 gabRcd(2 , e , chde 2 Nhcd 2 , c , dh
e
e)

1 2gabRcdef , e , dhcf 2 Racbd( , e , chde 1 , e , dhce 2 Nhcd 2 , c , dh
e
e)

1 1±2 , cR( , ch
ab 2 , ahb

c 2 , bha
c) 2 3 , cRad( , ch

b
d 1 , dh

b
c 2 , bhcd)

2 3 , cRbd( , ch
a
d 1 , dh

a
c 2 , ahcd)

2 1±4 (gab , cR 2 6 , cRab)(2 , dhcd 2 , ch
d
d)

2 1±2 NR hab 2 , a , cRhb
c 2 , b , cRha

c

2 1±2 gab , c , dR hcd 1 3 , c , dRabhcd

1 3±2 N(2Rachb
c 1 2Rbcha

c 1 Nhab 1 , a , bhc
c 2 , c , ahb

c 2 , c , bha
c)
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2 1±2 gabN(Rcdhcd 1 Nhc
c 2 , c , dhcd)

2 , a , b(Rcdhcd 1 Nhc
c 2 , c , dhcd) (A.27)

For the stress-energy tensor functional,

T ab [g, F n ] [ , a F n , b F n 2 1±2 gab , c F n , c F n

2 1±2 gabm2 F 2
n 1 j (gabN 2 , a , b 1 Gab) F 2

n

T ab [gÄ , F n ] 5 T ab [g, F n ] 1 T (1)ab [g, F n; h ] 1 O(h2)

with

T (1)ab [g, F n; h ] 5 2 T ac [g, F n ]hb
c 2 T bc [g, F n ]ha

c

2
1

2
( , c F n , c F n 1 m2 F 2

n)h
ab 1

1

2
gab , c F n , d F nhcd

1
j
2

[2 Rhab 1 gabRcdhcd 1 , c , ahb
c 1 , c , bha

c 2 , a , bhc
c

2 Nhab 1 gab(Nhc
c 2 , c , dhcd) 1 ( , ahb

c 1 , bha
c

2 , ch
ab 2 2gab , dhcd 1 gab , ch

d
d) , c

1 2habN 2 2gabhcd , c , d ]F 2
n (A.28)
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